Consider a vector addition \(\vec{P}\)+\(\vec{Q}\)=\(\vec{R}\). If \(\vec{P}\)=|\(\vec{P}\)|\(\hat{i}\),|\(\vec{Q}\)|=10 and\(\vec{R}\)= 3 |\(\vec{P}\)|\(\hat{j}\),then |\(\vec{P}\)| is:
\(\sqrt{10}\)
30
\(\sqrt{30}\)
2\(\sqrt{10}\)
2\(\sqrt{20}\)
Given:
Step 1: Express Vector Addition
The vector addition \( \overrightarrow{P} + \overrightarrow{Q} = \overrightarrow{R} \) can be written as:
\[ |\overrightarrow{P}| \hat{i} + \overrightarrow{Q} = 3|\overrightarrow{P}| \hat{j} \]
Step 2: Determine Components of \( \overrightarrow{Q} \)
Let \( \overrightarrow{Q} = Q_x \hat{i} + Q_y \hat{j} \). Then:
\[ |\overrightarrow{P}| \hat{i} + Q_x \hat{i} + Q_y \hat{j} = 3|\overrightarrow{P}| \hat{j} \]
Equate the components:
Step 3: Use Magnitude of \( \overrightarrow{Q} \)
Given \( |\overrightarrow{Q}| = 10 \), we have:
\[ \sqrt{Q_x^2 + Q_y^2} = 10 \]
Substitute \( Q_x \) and \( Q_y \):
\[ \sqrt{(-|\overrightarrow{P}|)^2 + (3|\overrightarrow{P}|)^2} = 10 \]
\[ \sqrt{|\overrightarrow{P}|^2 + 9|\overrightarrow{P}|^2} = 10 \]
\[ \sqrt{10|\overrightarrow{P}|^2} = 10 \]
\[ |\overrightarrow{P}| \sqrt{10} = 10 \]
\[ |\overrightarrow{P}| = \frac{10}{\sqrt{10}} = \sqrt{10} \]
Conclusion:
The magnitude of \( \overrightarrow{P} \) is \( \sqrt{10} \).
Answer: \(\boxed{A}\)
Let's analyze the given vector addition problem:
\[\vec{P} + \vec{Q} = \vec{R}\]
We are given:
- \(\vec{P} = |\vec{P}| \hat{i}\)
- \(|\vec{Q}| = 10\)
- \(\vec{R} = 3 |\vec{P}| \hat{j}\)
Let's denote \(|\vec{P}|\) as \(P\). Therefore, \(\vec{P} = P \hat{i}\).
Given the magnitude and direction of \(\vec{Q}\) are not directly specified, we need to find out its components.
The vector equation can be written in component form:
\[P \hat{i} + \vec{Q} = 3P \hat{j}\]
Let \(\vec{Q} = Q_x \hat{i} + Q_y \hat{j}\).
Thus,
\[P \hat{i} + Q_x \hat{i} + Q_y \hat{j} = 0 \hat{i} + 3P \hat{j}\]
From the above equation, we can separate it into its \(i\)-component and \(j\)-component equations:
\[P + Q_x = 0\]
\[Q_y = 3P\]
From the first equation:
\[Q_x = -P\]
Given \(|\vec{Q}| = 10\):
\[|\vec{Q}| = \sqrt{Q_x^2 + Q_y^2}\]
Substitute \(Q_x\) and \(Q_y\):
\[10 = \sqrt{(-P)^2 + (3P)^2}\]
\[10 = \sqrt{P^2 + 9P^2}\]
\[10 = \sqrt{10P^2}\]
\[10 = \sqrt{10} \cdot P\]
\[10 = \sqrt{10} P\]
\[P = \frac{10}{\sqrt{10}} = \sqrt{10}\]
Thus, the magnitude of \(\vec{P}\), \(|\vec{P}|\), is \(\sqrt{10}\).
So The correct answer is option (A): \(\sqrt{10}\)
Step 1: Analyze the given vector equation.
We are given the vector addition equation:
\[ \vec{P} + \vec{Q} = \vec{R}. \]
The vectors are described as:
Step 2: Break the vectors into components.
From the given information:
Let \(\vec{Q} = Q_x \hat{i} + Q_y \hat{j}\). Using the vector addition equation, we can write: \[ \vec{P} + \vec{Q} = \vec{R}. \]
In component form: \[ (|\vec{P}| + Q_x) \hat{i} + Q_y \hat{j} = 0 \hat{i} + 3|\vec{P}| \hat{j}. \]
Equating the \(x\)- and \(y\)-components: \[ |\vec{P}| + Q_x = 0 \quad \text{(1)}, \] \[ Q_y = 3|\vec{P}| \quad \text{(2)}. \]
---
Step 3: Use the magnitude of \(\vec{Q}\).
The magnitude of \(\vec{Q}\) is given as \(|\vec{Q}| = 10\). The magnitude of a vector is related to its components by: \[ |\vec{Q}| = \sqrt{Q_x^2 + Q_y^2}. \]
Substitute \(Q_x\) from equation (1): \[ Q_x = -|\vec{P}|. \] Substitute \(Q_y\) from equation (2): \[ Q_y = 3|\vec{P}|. \] Thus: \[ |\vec{Q}| = \sqrt{(-|\vec{P}|)^2 + (3|\vec{P}|)^2}. \] Simplify: \[ 10 = \sqrt{|\vec{P}|^2 + 9|\vec{P}|^2}. \] \[ 10 = \sqrt{10|\vec{P}|^2}. \] Square both sides: \[ 100 = 10|\vec{P}|^2. \] Solve for \(|\vec{P}|^2\): \[ |\vec{P}|^2 = 10. \] Take the square root: \[ |\vec{P}| = \sqrt{10}. \] ---
Final Answer: The magnitude of \(\vec{P}\) is \( \mathbf{\sqrt{10}} \), which corresponds to option \( \mathbf{(A)} \).
y = a sin(βx + γt)wherex and t represent displacement and time, respectively. Then, the dimensional formula for β— γis:
A physical quantity, represented both in magnitude and direction can be called a vector.
For the supplemental purposes of these vectors, there are two laws that are as follows;
It means that if we have any two vectors a and b, then for them
\(\overrightarrow{a}+\overrightarrow{b}=\overrightarrow{b}+\overrightarrow{a}\)
It means that if we have any three vectors namely a, b and c.
\((\overrightarrow{a}+\overrightarrow{b})+\overrightarrow{c}=\overrightarrow{a}+(\overrightarrow{b}+\overrightarrow{c})\)
Read More: Addition of Vectors