Step 1: Heat supplied per cycle.
Fuel energy:
\[
q_{in} = (40 \times 10^{-6} \, kg)(44 \times 10^{6} \, J/kg)
\]
\[
q_{in} = 1760 \, J = 1.76 \, kJ
\]
Step 2: Work output per cycle.
Given: $W_{out} = 1 \, kJ$.
So, cycle efficiency:
\[
\eta = \frac{W_{out}}{q_{in}} = \frac{1}{1.76} \approx 0.568
\]
Step 3: Otto cycle efficiency formula.
\[
\eta = 1 - \frac{1}{r^{\gamma-1}}
\]
where $r =$ compression ratio, $\gamma = 1.4$.
\[
0.568 = 1 - \frac{1}{r^{0.4}}
\]
\[
\frac{1}{r^{0.4}} = 0.432 \Rightarrow r^{0.4} = \frac{1}{0.432} \approx 2.314
\]
\[
r = (2.314)^{\tfrac{1}{0.4}} = (2.314)^{2.5} \approx 7.87
\]
Final Answer:
\[
\boxed{7.87}
\]
% Quicktip