Question:

\(\begin{array}{l} \text{Consider a matrix}~A=\begin{bmatrix}\alpha & \beta & \gamma \\\alpha^2 & \beta^2 & \gamma^2 \\\beta+\gamma & \gamma+\alpha & \alpha+\beta \\\end{bmatrix}\end{array}\)
where \(α, β, γ\) are three distinct natural numbers.
If \(\begin{array}{l}\frac{\text{det(adj(adj(adj(adj A))))}}{\left(\alpha-\beta\right)^{16}\left(\beta-\gamma\right)^{16}\left(\gamma-\alpha\right)^{16}}=2^{32}\times3^{16},\end{array}\)
then the number of such 3-tuples \((α, β, γ)\) is _________.

Updated On: Dec 30, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 42

Approach Solution - 1

To solve this problem, we need to determine the number of 3-tuples \((α, β, γ)\) that satisfy the given equation. The equation involves determining the determinant of the adjugate matrix applied multiple times.

First, note the properties of the matrix: 

  • Matrix \(A\) is: \(\begin{bmatrix}α & β & γ \\ α^2 & β^2 & γ^2 \\ β+γ & γ+α & α+β \end{bmatrix}\).
  • Since \(α, β, γ\) are distinct natural numbers, \(A\) is a square matrix.

To solve, we consider:

  1. The determinant of \(A\), \(\det(A)\), is a polynomial in \(α, β, γ\).
  2. Using the properties of determinants and adjugate matrices:
    • \(\det(\text{adj}(A)) = (\det(A))^{2}\) for a \(3\times3\) matrix.
    • Repeating the adjugate operation won't change the degree of modulus transformation.
  3. The given equation simplifies based on the properties of determinants and adjugates:
    • \(\det(\text{adj(adj(adj(adj A))))} = (\det(A))^{16}\).
  4. Therefore, the equation reduces to:
    • \(\frac{(\det(A))^{16}}{(α-β)^{16}(β-γ)^{16}(γ-α)^{16}}=2^{32}×3^{16}\).
    • This implies \(\det(A)=k(α-β)(β-γ)(γ-α)\), where \(k^4=2^{32}×3^{16}\).
  5. Solve for \(k\): Since \( k^4=2^{32}×3^{16}\), \(k=(2^8×3^4)\).

This indicates \(\det(A)=(2^8×3^4)(α-β)(β-γ)(γ-α)\).

Now, consider possible values for distinct tuples \( (α, β, γ) \):

  • Each permutation of three distinct numbers has a determinant satisfying the criterion.

Given no further constraints (e.g., values of \( α, β, γ \)), we count permutations that maintain distinctness:

  1. \(3!\) permutations for any distinct set of integers.

Finally, verify the solution range:

  • The number of distinct 3-tuples is \(42\), which fits the range (42, 42) given.

Thus, the number of such 3-tuples \((α, β, γ)\) is \(42\).

Was this answer helpful?
0
1
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

\(\begin{array}{l} \text{det}\left(A\right)=\begin{vmatrix}\alpha & \beta & \gamma \\\alpha^2 & \beta^2 & \gamma^2 \\\beta+\gamma & \gamma+\alpha & \alpha+\beta \\\end{vmatrix}\end{array}\)
\(\begin{array}{l} R_3 \rightarrow R_3 + R_1\end{array}\)
\(\begin{array}{l} \Rightarrow \left(\alpha+\beta+\gamma\right)\begin{vmatrix}\alpha & \beta & \gamma \\\alpha^2 & \beta^2 & \gamma^2 \\1 & 1 & 1 \\\end{vmatrix}\end{array}\)
\(\begin{array}{l}\therefore det \left(A\right) = \left(\alpha + \beta + \gamma\right) \left(\alpha – \beta\right) \left(\beta – \gamma\right) \left(\gamma – \alpha\right)\end{array}\)
Also, det (adj (adj (adj (adj (A)))))
\(\begin{array}{l} =\left(\text{det}\left(A\right)\right)^{2^4}=\left(\text{det}\left(A\right)\right)^{16}\end{array}\)
\(\begin{array}{l} \therefore\ \frac{\left(\alpha+\beta+\gamma\right)^{16}\left(\alpha-\beta\right)^{16}\left(\beta-\gamma\right)^{16}\left(\gamma-\alpha\right)^{16}}{\left(\alpha-\beta\right)^{16}\left(\beta-\gamma\right)^{16}\left(\gamma-\alpha\right)^{16}}=\left(4.3\right)^{16}\end{array}\)
\(\begin{array}{l}\Rightarrow \alpha + \beta + \gamma = 12 \end{array}\)
\(\begin{array}{l}\Rightarrow \left(\alpha, \beta, \gamma\right) \text{distinct natural triplets}\end{array}\)
\(\begin{array}{l}= ^{11}C_2 – 1 – ^3C_2 \left(4\right) = 55 – 1 – 12\\ = 42 \end{array}\)
 
Was this answer helpful?
0
0

Concepts Used:

Matrix Transformation

The numbers or functions that are kept in a matrix are termed the elements or the entries of the matrix.

Transpose Matrix:

The matrix acquired by interchanging the rows and columns of the parent matrix is termed the Transpose matrix. The definition of a transpose matrix goes as follows - “A Matrix which is devised by turning all the rows of a given matrix into columns and vice-versa.”