Concentration of $H _2 SO _4$ and $Na _2 SO _4$ in a solution is $1 M$ and $1.8 \times 10^{-2} M$
\(H_2SO_4\rightarrow H^++HSO^-_4\)
\(HSO^-_4\rightleftharpoons H^++SO^{2-}_4 \\ \begin{matrix} 1 && 1 & 1.8\times10^{-2} \\1+x && 1-x & (1.8\times10^{-2}-x) \end{matrix}\)
\(x\approx1 \; x\lt1.8\times10^{-2}\)
\(k_{a_2}=1.2\times10^{-2}\)
\(1.2\times10^{-2}=\frac{1\times[SO^{2-}_4]}{1}\)
\([SO^{2-}_4]=1.2\times10^{-2}M\)
\(PbSO_4 \rightleftharpoons Pb^{2+}+SO^{2-}_4 \\ \begin{matrix} &&&&&s && 1.2\times10^{-2}\end{matrix}\)
\(s=\frac{K_{sp}}{1.2\times10^{-2}}\)
\(s=\frac{1.6\times10^{-8}}{1.2\times10^{-2}}\)
\(s=1.33\times10^{-6}\)
\(Y=6\)
So, the answer is 6.
A substance 'X' (1.5 g) dissolved in 150 g of a solvent 'Y' (molar mass = 300 g mol$^{-1}$) led to an elevation of the boiling point by 0.5 K. The relative lowering in the vapour pressure of the solvent 'Y' is $____________ \(\times 10^{-2}\). (nearest integer)
[Given : $K_{b}$ of the solvent = 5.0 K kg mol$^{-1}$]
Assume the solution to be dilute and no association or dissociation of X takes place in solution.
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?
A solution is a homogeneous mixture of two or more components in which the particle size is smaller than 1 nm.
For example, salt and sugar is a good illustration of a solution. A solution can be categorized into several components.
The solutions can be classified into three types:
On the basis of the amount of solute dissolved in a solvent, solutions are divided into the following types: