Concentration of $H _2 SO _4$ and $Na _2 SO _4$ in a solution is $1 M$ and $1.8 \times 10^{-2} M$
\(H_2SO_4\rightarrow H^++HSO^-_4\)
\(HSO^-_4\rightleftharpoons H^++SO^{2-}_4 \\ \begin{matrix} 1 && 1 & 1.8\times10^{-2} \\1+x && 1-x & (1.8\times10^{-2}-x) \end{matrix}\)
\(x\approx1 \; x\lt1.8\times10^{-2}\)
\(k_{a_2}=1.2\times10^{-2}\)
\(1.2\times10^{-2}=\frac{1\times[SO^{2-}_4]}{1}\)
\([SO^{2-}_4]=1.2\times10^{-2}M\)
\(PbSO_4 \rightleftharpoons Pb^{2+}+SO^{2-}_4 \\ \begin{matrix} &&&&&s && 1.2\times10^{-2}\end{matrix}\)
\(s=\frac{K_{sp}}{1.2\times10^{-2}}\)
\(s=\frac{1.6\times10^{-8}}{1.2\times10^{-2}}\)
\(s=1.33\times10^{-6}\)
\(Y=6\)
So, the answer is 6.
Let $ S $ denote the locus of the point of intersection of the pair of lines $$ 4x - 3y = 12\alpha,\quad 4\alpha x + 3\alpha y = 12, $$ where $ \alpha $ varies over the set of non-zero real numbers. Let $ T $ be the tangent to $ S $ passing through the points $ (p, 0) $ and $ (0, q) $, $ q > 0 $, and parallel to the line $ 4x - \frac{3}{\sqrt{2}} y = 0 $.
Then the value of $ pq $ is
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
A solution is a homogeneous mixture of two or more components in which the particle size is smaller than 1 nm.
For example, salt and sugar is a good illustration of a solution. A solution can be categorized into several components.
The solutions can be classified into three types:
On the basis of the amount of solute dissolved in a solvent, solutions are divided into the following types: