In the complex ion Fe(C2O4)3 the Co-ordination number of Fe is
If the ratio of lengths, radii and Young's Moduli of steel and brass wires in the figure are $ a $, $ b $, and $ c $ respectively, then the corresponding ratio of increase in their lengths would be:
Two charges $ -q $ each are fixed, separated by distance $ 2d $. A third charge $ q $ of mass $ m $ placed at the mid-point is displaced slightly by $ x' (x \ll d) $ perpendicular to the line joining the two fixed charges as shown in the figure. The time period of oscillation of $ q $ will be:
A coordination compound holds a central metal atom or ion surrounded by various oppositely charged ions or neutral molecules. These molecules or ions are re-bonded to the metal atom or ion by a coordinate bond.
A coordination entity composes of a central metal atom or ion bonded to a fixed number of ions or molecules.
A molecule, ion, or group which is bonded to the metal atom or ion in a complex or coordination compound by a coordinate bond is commonly called a ligand. It may be either neutral, positively, or negatively charged.