Let $\Sigma = \{a, b, c\}$. For $x \in \Sigma^*$, and $\alpha \in \Sigma$, let $\#\alpha(x)$ denote the number of occurrences of $\alpha$ in $x$. Which one or more of the following option(s) define(s) regular language(s)?
Match List-I with List-II
\[\begin{array}{|l|l|} \hline \text{List-I (Physical Quantity)} & \text{List-II (Units)} \\ \hline \text{(A) Magnetic field} & \text{(I) J T\(^{-1}\)} \\ \hline \text{(B) Magnetic moment} & \text{(II) T m A\(^{-1}\)} \\ \hline \text{(C) Pole strength} & \text{(III) J T\(^{-1}\) m\(^{-1}\)} \\ \hline \text{(D) Permeability of free space} & \text{(IV) Wb m\(^{-2}\)} \\ \hline \end{array}\]Choose the correct answer from the options given below: