From $x-z=0\Rightarrow z=x$. Substitute in $x-2y+z=0$ to get $x-2y+x=0\Rightarrow 2x-2y=0\Rightarrow x=y$.
Thus $x=y=z=t$ for some $t\in\mathbb{R}$. Hence
\[
(x,y,z)^\top=t\begin{pmatrix}1\\ [2pt]1\\[2pt]1\end{pmatrix},
\]
so the solution set is oneโdimensional and equals
$S=\left\{\,\alpha\!\begin{pmatrix}1\\[2pt]1\\[2pt]1\end{pmatrix}\middle|\alpha\in\mathbb{R}\right\}$, which matches \fbox{(A)}.