Given: ΔABC ~ ΔFEG
CD and GH are respectively the bisectors of ΔACB and ΔEGF, such that D and H lie on sides AB and FE of ΔABC and ΔEFG respectively.
To Prove:
Proof:
(i) It is given that ∆ABC ∼ ∆FEG.
∴ \(\angle\)A = \(\angle\)F, ∠B = ∠E, and \(\angle\)ACB = \(\angle\)FGE
∴ \(\angle\)ACD = \(\angle\)FGH (Angle bisector)
And, \(\angle\)DCB = HGE (Angle bisector)
In ∆ACD and ∆FGH, \(\angle\)A = \(\angle\)F (Proved above)
\(\angle\)ACD = \(\angle\)FGH (Proved above)
∴ ∆ACD ∼ ∆FGH (By AA similarity criterion)
⇒\(\frac{CD}{GH}=\frac{AC}{FG}\)
(ii) In ∆DCB and ∆HGE, \(\angle\)DCB = \(\angle\)HGE (Proved above)
\(\angle\)B = \(\angle\)E (Proved above)
∴ ∆DCB ∼ ∆HGE (By AA similarity criterion)
(iii) In ∆DCA and ∆HGF, \(\angle\)ACD = \(\angle\)FGH (Proved above)
\(\angle\)A = \(\angle\)F (Proved above)
∴ ∆DCA ∼ ∆HGF (By AA similarity criterion)
In the adjoining figure, \( AP = 1 \, \text{cm}, \ BP = 2 \, \text{cm}, \ AQ = 1.5 \, \text{cm}, \ AC = 4.5 \, \text{cm} \) Prove that \( \triangle APQ \sim \triangle ABC \).
Hence, find the length of \( PQ \), if \( BC = 3.6 \, \text{cm} \).
किसी खेल का आँखों देखा वर्णन...
संकेत बिंदु – खेल का वातावरण • लोगों में उत्साह • अंतिम चरण में पासा पलटा
‘दीवार खड़ी करना’ मुहावरे का वाक्य में इस प्रकार प्रयोग करें कि अर्थ स्पष्ट हो जाए।
Select from the following a statement which is not true about the burning of magnesium ribbon in air:
Analyze the significant changes in printing technology during 19th century in the world.