Question:

Calculate the mean of the following data :
Class :4 – 67 – 910 – 1213 – 15
Frequency :54910

Updated On: Feb 26, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Step 1: Find the class midpoints
The midpoints (xix_i) are calculated as the average of the lower and upper limits of each class:
x1=4+62=5,x2=7+92=8,x3=10+122=11,x4=13+152=14.x_1 = \frac{4 + 6}{2} = 5, \quad x_2 = \frac{7 + 9}{2} = 8, \quad x_3 = \frac{10 + 12}{2} = 11, \quad x_4 = \frac{13 + 15}{2} = 14.
Step 2: Multiply midpoints by frequencies
Construct the table as follows:
ClassFrequency (fi)Midpoint (xi)fixi46552579483210129119913151014140\begin{array}{|c|c|c|c|}\hline\text{Class} & \text{Frequency } (f_i) & \text{Midpoint } (x_i) & f_i x_i \\\hline4 - 6 & 5 & 5 & 25 \\7 - 9 & 4 & 8 & 32 \\10 - 12 & 9 & 11 & 99 \\13 - 15 & 10 & 14 & 140 \\\hline\end{array}
Step 3: Calculate the total frequency and total fixif_i x_i 
fi=5+4+9+10=28.\sum f_i = 5 + 4 + 9 + 10 = 28.
fixi=25+32+99+140=296.\sum f_i x_i = 25 + 32 + 99 + 140 = 296.
Step 4: Calculate the mean
The formula for the mean is:
Mean=fixifi.\text{Mean} = \frac{\sum f_i x_i}{\sum f_i}.
Substitute the values:
Mean=29628=10.57.\text{Mean} = \frac{296}{28} = 10.57.
Correct Answer: Mean = 10.57

Was this answer helpful?
1
0