A substance 'X' (1.5 g) dissolved in 150 g of a solvent 'Y' (molar mass = 300 g mol$^{-1}$) led to an elevation of the boiling point by 0.5 K. The relative lowering in the vapour pressure of the solvent 'Y' is $____________ \(\times 10^{-2}\). (nearest integer)
[Given : $K_{b}$ of the solvent = 5.0 K kg mol$^{-1}$]
Assume the solution to be dilute and no association or dissociation of X takes place in solution.
Aakash and Baadal entered into partnership on 1st October 2023 with capitals of Rs 80,00,000 and Rs 60,00,000 respectively. They decided to share profits and losses equally. Partners were entitled to interest on capital @ 10 per annum as per the provisions of the partnership deed. Baadal is given a guarantee that his share of profit, after charging interest on capital, will not be less than Rs 7,00,000 per annum. Any deficiency arising on that account shall be met by Aakash. The profit of the firm for the year ended 31st March 2024 amounted to Rs 13,00,000.
Prepare Profit and Loss Appropriation Account for the year ended 31st March 2024.
It is the amount of solute present in one liter of solution.
Concentration in Parts Per Million - The parts of a component per million parts (106) of the solution.
Mass Percentage - When the concentration is expressed as the percent of one component in the solution by mass it is called mass percentage (w/w).
Volume Percentage - Sometimes we express the concentration as a percent of one component in the solution by volume, it is then called as volume percentage
Mass by Volume Percentage - It is defined as the mass of a solute dissolved per 100mL of the solution.
Molarity - One of the most commonly used methods for expressing the concentrations is molarity. It is the number of moles of solute dissolved in one litre of a solution.
Molality - Molality represents the concentration regarding moles of solute and the mass of solvent.
Normality - It is the number of gram equivalents of solute present in one liter of the solution and it is denoted by N.
Formality - It is the number of gram formula present in one litre of solution.