To determine the pH of a \(10\ \text{mM}\) solution of the weak acid HA, given its \(pK_a = 4\), follow these steps:
- Write the dissociation equilibrium for the acid: \(\mathrm{HA \rightleftharpoons H^+(aq) + A^-(aq)}\).
- Use the expression for the acid dissociation constant \(K_a\): \[K_a = [\mathrm{H^+}][\mathrm{A^-}]/[\mathrm{HA}]\]
- Given \(pK_a = 4\), calculate \(K_a\):
- \(K_a = 10^{-pK_a} = 10^{-4}\)
- Assume the initial concentration of HA is \([HA]_0 = 10\ \text{mM} = 0.01\ \text{M}\).
- Calculate the concentration of \([\mathrm{H^+}]\) using the assumption that degree of dissociation is negligible:
- \(K_a = [\mathrm{H^+}]^2/[\mathrm{HA}]_0\)
- Rearrange to find \([\mathrm{H^+}] = \sqrt{K_a \times [\mathrm{HA}]_0}\)
- \([\mathrm{H^+}] = \sqrt{10^{-4} \times 0.01} = \sqrt{10^{-6}} = 10^{-3}\ \text{M}\)
- Determine the pH of the solution:
- \(\text{pH} = -\log_{10}([\mathrm{H^+}]) = -\log_{10}(10^{-3}) = 3\)
- Confirm the calculated pH falls within the specified range (3, 3), verifying it as correct.
The pH of the solution is 3.