Step 1: Recall the formula for unit vectors.
A unit vector in the direction of a vector \( \vec{v} \) is given by:
\[
\hat{v} = \frac{\vec{v}}{|\vec{v}|}
\]
Step 2: Find the magnitude of \( \vec{u} \).
The magnitude of \( \vec{u} = 8\hat{i} + 3\hat{j} - \hat{k} \) is:
\[
|\vec{u}| = \sqrt{8^2 + 3^2 + (-1)^2} = \sqrt{64 + 9 + 1} = \sqrt{74}
\]
Step 3: Find the unit vector in the opposite direction.
The unit vector in the opposite direction is:
\[
\hat{u} = -\frac{\vec{u}}{|\vec{u}|} = -\frac{8\hat{i} + 3\hat{j} - \hat{k}}{\sqrt{74}} = -\frac{8}{\sqrt{74}}\hat{i} - \frac{3}{\sqrt{74}}\hat{j} + \frac{1}{\sqrt{74}}\hat{k}
\]
Final Answer: \[ \boxed{-\frac{8}{\sqrt{74}}\hat{i} - \frac{3}{\sqrt{74}}\hat{j} + \frac{1}{\sqrt{74}}\hat{k}} \]