The balanced chemical equation for the combustion of benzene is:
$C_6H_6(\text{liquid}) + \dfrac{15}{2} O_2(\text{gas}) \rightarrow 6 CO_2(\text{gas}) + 3 H_2O(\text{liquid})$
This tells us that 1 mole of benzene reacts with $\dfrac{15}{2} = 7.5$ moles of oxygen.
Molar mass of benzene, $C_6H_6$:
$6 \times 12 + 6 \times 1 = 72 + 6 = \mathbf{78\ g/mol}$
Given mass of benzene = 39 g
Moles of benzene = $\dfrac{39}{78} = \mathbf{0.5\ mol}$
Oxygen required = $0.5 \times 7.5 = \mathbf{3.75\ mol}$
At STP, 1 mol of a gas occupies 22.4 L
Volume of oxygen needed = $3.75 \times 22.4 = \mathbf{84\ L}$
Answer: 84 litre
If 0.01 mol of $\mathrm{P_4O_{10}}$ is removed from 0.1 mol, then the remaining molecules of $\mathrm{P_4O_{10}}$ will be: