Step 1: Recall the formula for the velocity of an electron in the nth Bohr orbit
In Bohr’s model for the hydrogen atom, the velocity of an electron in the nth orbit is given by:
\[
v_n = \frac{e^2}{2\varepsilon_0 h} \cdot \frac{1}{n}
\]
However, it can also be expressed in terms of the Rydberg constant \(R_H\) as:
\[
v_n = \sqrt{\frac{2R_H h}{m_e}} \cdot \frac{1}{n}
\]
But the simplest and direct Bohr-derived expression is:
\[
v_n = \frac{e^2}{2\varepsilon_0 h} \cdot \frac{1}{n}
\]
Yet since we are given \(R_H = 2.18 \times 10^{-18}\, \text{J}\), we can instead use the energy relation:
\[
E_n = -R_H \cdot \frac{1}{n^2} = \frac{1}{2} m_e v_n^2
\]
for the first orbit (\(n = 1\)).
Step 2: Solve for \(v_1\)
\[
R_H = \frac{1}{2} m_e v_1^2
\]
\[
v_1 = \sqrt{\frac{2R_H}{m_e}}
\]
Substitute the given values:
\[
R_H = 2.18 \times 10^{-18}\, \text{J}, \quad m_e = 9.1 \times 10^{-31}\, \text{kg}.
\]
\[
v_1 = \sqrt{\frac{2 \times 2.18 \times 10^{-18}}{9.1 \times 10^{-31}}}
\]
\[
v_1 = \sqrt{\frac{4.36 \times 10^{-18}}{9.1 \times 10^{-31}}} = \sqrt{4.79 \times 10^{12}} = 2.19 \times 10^{6}\, \text{m/s}.
\]
Step 3: Express in the required form
\[
v_1 = 2.19 \times 10^{6}\, \text{m/s} = 21.9 \times 10^5\, \text{m/s}.
\]
Nearest integer value = 22 × 10⁵ m/s.
Step 4: Final answer
22