Question:

Energy and radius of first Bohr orbit of He$^+$ and Li$^2+$ are:
Given: $ R_H = 2.18 \times 10^{-18} \, \text{J}, a_0 = 52.9 \, \text{pm} $

Show Hint

For hydrogen-like ions, the energy and radius of the first Bohr orbit depend on the atomic number \( Z \). The energy is proportional to \( Z^2 \), and the radius is inversely proportional to \( Z \).
Updated On: May 4, 2025
  • \( E_n (\text{Li}^{2+}) = -8.72 \times 10^{-18} \, \text{J}, r_n (\text{Li}^{2+}) = 26.4 \, \text{pm}, E_n (\text{He}^{+}) = -19.62 \times 10^{-18} \, \text{J}, r_n (\text{He}^{+}) = 9.6 \, \text{pm} \)
  • \( E_n (\text{Li}^{2+}) = -19.62 \times 10^{-16} \, \text{J}, r_n (\text{Li}^{2+}) = 17.6 \, \text{pm}, E_n (\text{He}^{+}) = -8.72 \times 10^{-16} \, \text{J}, r_n (\text{He}^{+}) = 26.4 \, \text{pm} \)
  • \( E_n (\text{Li}^{2+}) = -8.72 \times 10^{-16} \, \text{J}, r_n (\text{Li}^{2+}) = 17.6 \, \text{pm}, E_n (\text{He}^{+}) = -19.62 \times 10^{-16} \, \text{J}, r_n (\text{He}^{+}) = 26.4 \, \text{pm} \)
  • \( E_n (\text{Li}^{2+}) = -19.62 \times 10^{-18} \, \text{J}, r_n (\text{Li}^{2+}) = 17.5 \, \text{pm}, E_n (\text{He}^{+}) = -8.72 \times 10^{-18} \, \text{J}, r_n (\text{He}^{+}) = 26.4 \, \text{pm} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

The energy and radius of the first Bohr orbit are given by the following formulas:

  1. The energy of the nth orbit for a hydrogen-like atom:

    \(E_n = - \frac{R_H}{n^2} Z^2\)

    Where \( Z \) is the atomic number of the ion.

  2. The radius of the nth orbit:

    \(r_n = \frac{a_0}{Z} \cdot n\)

For Li2+ (Z = 3) and He+ (Z = 2), we calculate for \( n = 1 \) (the first Bohr orbit).

  • For Li2+ (Z = 3):

    \(E_n (\text{Li}^{2+}) = - \frac{2.18 \times 10^{-18}}{1^2} \cdot 3^2 = -19.62 \times 10^{-18} \, \text{J}\)

    \(r_n (\text{Li}^{2+}) = \frac{52.9 \, \text{pm}}{3} = 17.6 \, \text{pm}\)

  • For He+ (Z = 2):

    \(E_n (\text{He}^{+}) = - \frac{2.18 \times 10^{-18}}{1^2} \cdot 2^2 = -8.72 \times 10^{-18} \, \text{J}\)

    \(r_n (\text{He}^{+}) = \frac{52.9 \, \text{pm}}{2} = 26.4 \, \text{pm}\)


Thus, the correct values are:

  • \( E_n (\text{Li}^{2+}) = -19.62 \times 10^{-18} \, \text{J}, r_n (\text{Li}^{2+}) = 17.6 \, \text{pm} \)
  • \( E_n (\text{He}^{+}) = -8.72 \times 10^{-18} \, \text{J}, r_n (\text{He}^{+}) = 26.4 \, \text{pm} \)

Therefore, the correct answer is (1).

Was this answer helpful?
0
0

Questions Asked in NEET exam

View More Questions