By using properties of determinants, show that:
\(\begin{vmatrix}a^2+1&ab&ac\\ab&b^2+1&bc\\ca&cb&c^2+1\end{vmatrix}\)=1+a2+b2+c2
△=\(\begin{vmatrix}a^2+1&ab&ac\\ab&b^2+1&bc\\ca&cb&c^2+1\end{vmatrix}\)
Taking out common factors a, b, and c from R1, R2, and R3 respectively, we have:
△=abc\(\begin{vmatrix}a+\frac{1}{a}&b&c\\a&b+\frac{1}{b}&c\\a&b&c+\frac{1}{c}\end{vmatrix}\)
Applying R2 \(\to\) R2 − R1 and R3 \(\to\) R3 − R1, we have:
△=abc\(\begin{vmatrix}a+\frac{1}{a}&b&c\\-\frac{1}{a}&\frac{1}{b}&0\\-\frac{1}{a}&0&\frac{1}{c}\end{vmatrix}\)
Applying C1 \(\to\) a C1, C2 → b C2, and C3 → c C3, we have
△=abc.\(\frac{1}{abc}\)\(\begin{vmatrix}a^2+1&b^2&c^2\\-1&1&0\\-1&0&1\end{vmatrix}\)
=\(\begin{vmatrix}a^2+1&b^2&c^2\\-1&1&0\\-1&0&1\end{vmatrix}\)
Expanding along R3, we have:
△=-1\(\begin{vmatrix}b^2&c^2\\1&0\end{vmatrix}+\begin{vmatrix}a^2+1&b^2\\-1&1\end{vmatrix}\)
=-1(-c2)+(a2+1+b2)=1+a2+b2+c2
Hence, the given result is proved.
Let I be the identity matrix of order 3 × 3 and for the matrix $ A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} $, $ |A| = -1 $. Let B be the inverse of the matrix $ \text{adj}(A \cdot \text{adj}(A^2)) $. Then $ |(\lambda B + I)| $ is equal to _______
Let $A = \{ z \in \mathbb{C} : |z - 2 - i| = 3 \}$, $B = \{ z \in \mathbb{C} : \text{Re}(z - iz) = 2 \}$, and $S = A \cap B$. Then $\sum_{z \in S} |z|^2$ is equal to
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is:
Read More: Properties of Determinants