By using properties of determinants, show that:
\(\begin{vmatrix}a^2+1&ab&ac\\ab&b^2+1&bc\\ca&cb&c^2+1\end{vmatrix}\)=1+a2+b2+c2
△=\(\begin{vmatrix}a^2+1&ab&ac\\ab&b^2+1&bc\\ca&cb&c^2+1\end{vmatrix}\)
Taking out common factors a, b, and c from R1, R2, and R3 respectively, we have:
△=abc\(\begin{vmatrix}a+\frac{1}{a}&b&c\\a&b+\frac{1}{b}&c\\a&b&c+\frac{1}{c}\end{vmatrix}\)
Applying R2 \(\to\) R2 − R1 and R3 \(\to\) R3 − R1, we have:
△=abc\(\begin{vmatrix}a+\frac{1}{a}&b&c\\-\frac{1}{a}&\frac{1}{b}&0\\-\frac{1}{a}&0&\frac{1}{c}\end{vmatrix}\)
Applying C1 \(\to\) a C1, C2 → b C2, and C3 → c C3, we have
△=abc.\(\frac{1}{abc}\)\(\begin{vmatrix}a^2+1&b^2&c^2\\-1&1&0\\-1&0&1\end{vmatrix}\)
=\(\begin{vmatrix}a^2+1&b^2&c^2\\-1&1&0\\-1&0&1\end{vmatrix}\)
Expanding along R3, we have:
△=-1\(\begin{vmatrix}b^2&c^2\\1&0\end{vmatrix}+\begin{vmatrix}a^2+1&b^2\\-1&1\end{vmatrix}\)
=-1(-c2)+(a2+1+b2)=1+a2+b2+c2
Hence, the given result is proved.
What is the Planning Process?
Read More: Properties of Determinants