By using properties of determinants, show that:
\(\begin{vmatrix}a^2+1&ab&ac\\ab&b^2+1&bc\\ca&cb&c^2+1\end{vmatrix}\)=1+a2+b2+c2
△=\(\begin{vmatrix}a^2+1&ab&ac\\ab&b^2+1&bc\\ca&cb&c^2+1\end{vmatrix}\)
Taking out common factors a, b, and c from R1, R2, and R3 respectively, we have:
△=abc\(\begin{vmatrix}a+\frac{1}{a}&b&c\\a&b+\frac{1}{b}&c\\a&b&c+\frac{1}{c}\end{vmatrix}\)
Applying R2 \(\to\) R2 − R1 and R3 \(\to\) R3 − R1, we have:
△=abc\(\begin{vmatrix}a+\frac{1}{a}&b&c\\-\frac{1}{a}&\frac{1}{b}&0\\-\frac{1}{a}&0&\frac{1}{c}\end{vmatrix}\)
Applying C1 \(\to\) a C1, C2 → b C2, and C3 → c C3, we have
△=abc.\(\frac{1}{abc}\)\(\begin{vmatrix}a^2+1&b^2&c^2\\-1&1&0\\-1&0&1\end{vmatrix}\)
=\(\begin{vmatrix}a^2+1&b^2&c^2\\-1&1&0\\-1&0&1\end{vmatrix}\)
Expanding along R3, we have:
△=-1\(\begin{vmatrix}b^2&c^2\\1&0\end{vmatrix}+\begin{vmatrix}a^2+1&b^2\\-1&1\end{vmatrix}\)
=-1(-c2)+(a2+1+b2)=1+a2+b2+c2
Hence, the given result is proved.
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is:
Let I be the identity matrix of order 3 × 3 and for the matrix $ A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} $, $ |A| = -1 $. Let B be the inverse of the matrix $ \text{adj}(A \cdot \text{adj}(A^2)) $. Then $ |(\lambda B + I)| $ is equal to _______
Complete and balance the following chemical equations: (a) \[ 2MnO_4^-(aq) + 10I^-(aq) + 16H^+(aq) \rightarrow \] (b) \[ Cr_2O_7^{2-}(aq) + 6Fe^{2+}(aq) + 14H^+(aq) \rightarrow \]
Balance Sheet of Chandan, Deepak and Elvish as at 31st March, 2024
Liabilities | Amount (₹) | Assets | Amount (₹) |
---|---|---|---|
Capitals: | Fixed Assets | 27,00,000 | |
Chandan | 7,00,000 | Stock | 3,00,000 |
Deepak | 5,00,000 | Debtors | 2,00,000 |
Elvish | 3,00,000 | Cash | 1,00,000 |
General Reserve | 4,50,000 | ||
Creditors | 13,50,000 | ||
Total | 33,00,000 | Total | 33,00,000 |
Read More: Properties of Determinants