By using properties of determinants ,show that: \(\begin{vmatrix}0&a&-b\\-a&0&-c\\b&c&0\end{vmatrix}\)=0
We have,
△= \(\begin{vmatrix}0&a&-b\\-a&0&-c\\b&c&0\end{vmatrix}\)
Applying R1 \(\to\) cR1,we have
△=\(\frac{1}{c}\begin{vmatrix}0&ac&-bc\\-a&0&-c\\b&c&0\end{vmatrix}\)
Applying R11\(\to\) R1-bR2,we have
△=\(\frac{1}{c}\begin{vmatrix}ab&ac&0\\-a&0&-c\\b&c&0\end{vmatrix}\)
=\(\frac{1}{c}\begin{vmatrix}b&c&0\\-a&0&-c\\b&c&0\end{vmatrix}\)
Here, the two rows R1 and R3 are identical.
∴∆ = 0.
What is the Planning Process?
Read More: Properties of Determinants