>
Exams
>
Mathematics
>
Determinants
>
by using properties of determinants show that bmat
Question:
By using properties of determinants,show that:
\(\begin{bmatrix}1+a^2-b^2& 2ab& -2b\\ 2ab& 1-a^2+b^2& 2a\\ 2b& -2a& 1-a^2-b^2\end{bmatrix}\)
\(=(1+a^2+b^2)^3\)
CBSE CLASS XII
Updated On:
Sep 5, 2023
Hide Solution
Verified By Collegedunia
Solution and Explanation
\(\triangle=\begin{bmatrix}1+a^2-b^2& 2ab& -2b\\ 2ab& 1-a^2+b^2& 2a\\ 2b& -2a& 1-a^2-b^2\end{bmatrix}\)
Applying
\(R_1 → R_1 + bR_3\)
and
\(R_2 → R_2 − aR_3\)
, we have:
\(\triangle=\begin{bmatrix}1+a^2+b^2& 0& -b(1+a^2+b^2)\\ 0& 1+a^2+b^2& a(1+a^2+b^2)\\ 2b& -2a& 1-a^2-b^2\end{bmatrix}\)
\(=(1+a^2+b^2)^2\begin{bmatrix}1&0&-b\\ 0&1&a\\ 2b& -2a& 1-a^2-b^2\end{bmatrix}\)
Expanding along
\(R_1\)
, we have:
\(△=(1+a^2+b^2)^2\bigg[(1)\begin{bmatrix}1& a \\-2a& 1-a^2-b^2\end{bmatrix}-b\begin{bmatrix}0& 1\\ 2b& -2a\end{bmatrix}\bigg]\)
\(=(1+a^2+b^2)^2[1-a^2-b^2+2a^2-b(-2b)]\)
\(=(1+a^2+b^2)^2(1+a^2+b^2)\)
\(=(1+a^2+b^2)^3\)
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Determinants
If \[ f(x) = \begin{vmatrix} x^3 & 2x^2 + 1 & 1 + 3x \\ 3x^2 + 2 & 2x & x^3 + 6 \\ x^3 - x & 4 & x^2 - 2 \end{vmatrix} \] for all \( x \in \mathbb{R} \), then \( 2f(0) + f'(0) \) is equal to
JEE Main - 2024
Mathematics
Determinants
View Solution
Let \( A \) be a \( 3 \times 3 \) matrix and \( \det(A) = 2 \). If
\(n = \det(\text{adj}(\text{adj}(\ldots(\text{adj}(A))\ldots)))\)
with adjoint applied 2024 times, then the remainder when \( n \) is divided by 9 is equal to
\(\_\_\_\_\_.\)
JEE Main - 2024
Mathematics
Determinants
View Solution
If \( \sin\left(\frac{y}{x}\right) = \log_e |x| + \frac{\alpha}{2} \) is the solution of the differential equation \[x \cos\left(\frac{y}{x}\right) \frac{dy}{dx} = y \cos\left(\frac{y}{x}\right) + x\]and \( y(1) = \frac{\pi}{3} \), then \( \alpha^2 \) is equal to
JEE Main - 2024
Mathematics
Determinants
View Solution
If \[ f(x) = \begin{vmatrix} 2 \cos^4 x & 2 \sin^4 x & 3 + \sin^2 2x \\ 3 + 2 \cos^4 x & 2 \sin^4 x & \sin^2 2x \\ 2 \cos^4 x & 3 + 2 \sin^4 x & \sin^2 2x \end{vmatrix} \] then \( \frac{1}{5} f'(0) \) is equal to
JEE Main - 2024
Mathematics
Determinants
View Solution
Let $A =\left[ a _{i j}\right], a _{i j} \in Z \cap[0,4], 1 \leq i, j \leq 2$ .
The number of matrices $A$ such that the sum of all entries is a prime number $p \in(2,13)$ is _____.
JEE Main - 2023
Mathematics
Determinants
View Solution
View More Questions
Questions Asked in CBSE CLASS XII exam
Find the inverse of each of the matrices, if it exists.
\(\begin{bmatrix} 1 & 3\\ 2 & 7\end{bmatrix}\)
CBSE CLASS XII - 2023
Matrices
View Solution
For what values of x,
\(\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}\)
\(\begin{bmatrix} 1 & 2 & 0\\ 2 & 0 & 1 \\1&0&2 \end{bmatrix}\)
\(\begin{bmatrix} 0 \\2\\x\end{bmatrix}\)
=O?
CBSE CLASS XII - 2023
Matrices
View Solution
Find the inverse of each of the matrices,if it exists
\(\begin{bmatrix} 2 & 1 \\ 7 & 4 \end{bmatrix}\)
CBSE CLASS XII - 2023
Matrices
View Solution
What is the Planning Process?
CBSE CLASS XII - 2023
Planning process steps
View Solution
Find the inverse of each of the matrices,if it exists.
\(\begin{bmatrix} 2 & 3\\ 5 & 7 \end{bmatrix}\)
CBSE CLASS XII - 2023
Matrices
View Solution
View More Questions
Notes on Determinants
Determinants Mathematics
Determinant of a Matrix Mathematics
Determinant Mathematics
Consistent Systems of Linear Equations Mathematics
NCERT Solutions for Class 12 Maths Chapter 4 Determinants
Determinants And Matrices Mathematics