The bulk modulus \( B \) is defined as the ratio of the change in pressure to the relative change in volume:
\[
B = -\frac{\Delta P}{\frac{\Delta V}{V}}
\]
Rearranging to find the initial volume \( V \):
\[
V = -\frac{\Delta P}{B} \times \frac{\Delta V}{V}
\]
We are given:
- \( B = 2 \times 10^9 \, \text{Pa} \)
- \( \Delta P = P_2 - P_1 = 5 \, \text{atm} - 1 \, \text{atm} = 4 \, \text{atm} = 4 \times 10^5 \, \text{Pa} \)
- \( \Delta V = 0.8 \, \text{cm}^3 \)
Substituting the known values into the equation:
\[
V = \frac{4 \times 10^5 \times 0.8}{2 \times 10^9}
\]
\[
V = 4 \times 10^3 \, \text{cm}^3
\]
Thus, the initial volume is \( 4 \times 10^3 \, \text{cm}^3 \).