Briefly describe the following:
(a) Transcription
(b) Polymorphism
(c) Translation
(d) Bioinformatics
(a) Transcription
Transcription is the process of synthesis of RNA from DNA template. A segment of DNA gets copied into mRNA during the process. The process of transcription starts at the promoter region of the template DNA and terminates at the terminator region. The segment of DNA between these two regions is known as transcription unit. The transcription requires RNA polymerase enzyme, a DNA template, four types of ribonucleotides, and certain cofactors such as Mg2+ .
The three important events that occur during the process of transcription are as follows.
(i) Initiation
(ii) Elongation
(iii) Termination
The DNA-dependent RNA polymerase and certain initiation factors (σ) bind at the double stranded DNA at the promoter region of the template strand and initiate the process of transcription. RNA polymerase moves along the DNA and leads to the unwinding of DNA duplex into two separate strands. Then, one of the strands, called sense strand, acts as template for mRNA synthesis. The enzyme, RNA polymerase, utilizes nucleoside triphosphates (dNTPs) as raw material and polymerizes them to form mRNA according to the complementary bases present on the template DNA. This process of opening of helix and elongation of polynucleotide chain continues until the enzyme reaches the terminator region. As RNA polymerase reaches the terminator region, the newly synthesized mRNA transcripted along with enzyme is released. Another factor called terminator factor (ρ) is required for the termination of the transcription.



Study the given below single strand of deoxyribonucleic acid depicted in the form of a “stick” diagram with 5′ – 3′ end directionality, sugars as vertical lines and bases as single letter abbreviations and answer the questions that follow.
Name the covalent bonds depicted as (a) and (b) in the form of slanting lines in the diagram.
How many purines are present in the given “stick” diagram?
Draw the chemical structure of the given polynucleotide chain of DNA.
Study the given molecular structure of double-stranded polynucleotide chain of DNA and answer the questions that follow. 
(a) How many phosphodiester bonds are present in the given double-stranded polynucleotide chain?
(b) How many base pairs are there in each helical turn of double helix structure of DNA? Also write the distance between a base pair in a helix.
(c) In addition to H-bonds, what confers additional stability to the helical structure of DNA?
Use the given information to select the amino acid attached to the 3′ end of tRNA during the process of translation, if the coding strand of the structural gene being transcribed has the nucleotide sequence TAC.

Student to attempt either option-(A) or (B):
(A) Write the features a molecule should have to act as a genetic material. In the light of the above features, evaluate and justify the suitability of the molecule that is preferred as an ideal genetic material.
OR
(B) Differentiate between the following:
The very first stage of gene expression is the procedure of transcription. In this procedure, mRNA is the place where the genetic information is stored which later aids in encoding a protein. In this process, the DNA strand acts as a guide in the making of mRNA. Despite the fact that there is one exception which is adenine base pairs with uracil instead of thymine.
The transcription unit is a set of freshly combined RNA molecules that have been transcribed from DNA. The cause is to encode at least one gene. A protein that has been encoded or encrypted with a DNA transcription unit may have a coding sequence. Transcription has a lower copying fidelity rate when differentiated from DNA replication.
The procedure of transcription is enzymatically catalyzed into three steps: