Based on Heisenberg's uncertainty principle, the uncertainty in the velocity of the electron to be found within an atomic nucleus of diameter \( 10^{-15} \, \text{m} \) is \( \dots \dots \times 10^9 \, \text{ms}^{-1} \) (nearest integer). \[ \text{[Given: mass of electron} = 9.1 \times 10^{-31} \, \text{kg, Planck's constant (} h \text{)} = 6.626 \times 10^{-34} \, \text{Js]} \] \[ \text{(Value of } \pi = 3.14) \]
From Heisenberg's uncertainty principle:
\[ \Delta x \cdot m_e \cdot \Delta v \geq \frac{h}{4\pi} \]
Here:
\[ \Delta x = 10^{-15} \, \text{m}, \quad m_e = 9.1 \times 10^{-31} \, \text{kg}, \quad h = 6.626 \times 10^{-34} \, \text{Js}. \]
Rearranging for the uncertainty in velocity ($\Delta v$):
\[ \Delta v \geq \frac{h}{4\pi \cdot \Delta x \cdot m_e} \]
Substitute the values:
\[ \Delta v \geq \frac{6.626 \times 10^{-34}}{4 \cdot 3.14 \cdot (10^{-15}) \cdot (9.1 \times 10^{-31})} \]
Simplify the denominator:
\[ 4 \cdot 3.14 \cdot 10^{-15} \cdot 9.1 \times 10^{-31} = 1.143 \times 10^{-44} \]
Substitute back:
\[ \Delta v \geq \frac{6.626 \times 10^{-34}}{1.143 \times 10^{-44}} = 5.8 \times 10^{10} \, \text{ms}^{-1} \]
Uncertainty in velocity:
\[ \Delta v = 58 \times 10^9 \, \text{ms}^{-1} \]
Final Answer: 58.
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: