Step 1: Using the relation for kinetic energy
The kinetic energy per mole of an ideal gas is given by:
\[
KE = \frac{3}{2} RT
\]
Given, \( KE = 3000 \) J/mol, we solve for \( T \):
\[
T = \frac{2 \times 3000}{3R}
\]
Using \( R = 8.314 \) J/mol-K:
\[
T = \frac{6000}{3 \times 8.314} = \frac{6000}{24.942} \approx 240.6 K
\]
Step 2: Applying the Ideal Gas Law
The ideal gas equation is:
\[
PV = nRT
\]
Given:
\[
n = 3 \text{ moles}, \quad V = 10 \text{ L}, \quad R = 0.0821 \text{ atm L/mol K}, \quad T = 240.6 \text{ K}
\]
\[
P \times 10 = 3 \times 0.0821 \times 240.6
\]
\[
P = \frac{3 \times 0.0821 \times 240.6}{10}
\]
\[
P = \frac{59.2}{10} = 5.92 \text{ atm}
\]