The dissociation reaction of \( PCl_5 \) is:
\[
PCl_5 \rightleftharpoons PCl_3 + Cl_2
\]
Let the initial moles of \( PCl_5 \) be \( x \).
At equilibrium, if \( 0.2 \) mol of \( Cl_2 \) is formed, then the amount of \( PCl_5 \) dissociated will also be \( 0.2 \) mol, and the amount of \( PCl_3 \) formed will be \( 0.2 \) mol.
Thus, at equilibrium:
- \( PCl_5 \) left = \( x - 0.2 \) mol,
- \( PCl_3 \) = \( 0.2 \) mol,
- \( Cl_2 \) = \( 0.2 \) mol.
The equilibrium constant expression is:
\[
K_c = \frac{[PCl_3][Cl_2]}{[PCl_5]}
\]
Substituting the values:
\[
2 \times 10^{-2} = \frac{(0.2)(0.2)}{x - 0.2}
\]
\[
2 \times 10^{-2} (x - 0.2) = 0.04
\]
\[
x - 0.2 = \frac{0.04}{2 \times 10^{-2}}
\]
\[
x - 0.2 = 2
\]
\[
x = 2.2
\]
Thus, the correct answer is \(\boxed{2.2}\).