The first equation represents a hyperbola, and the second equation represents an ellipse. To find the number of intersection points, we need to solve the system of equations by substituting one into the other and analyzing the resulting equation.
After solving the system, we find that there are 2 points of intersection.
Thus, the correct answer is \( \boxed{2} \).

In \(\triangle ABC\), \(DE \parallel BC\). If \(AE = (2x+1)\) cm, \(EC = 4\) cm, \(AD = (x+1)\) cm and \(DB = 3\) cm, then the value of \(x\) is

In the adjoining figure, PA and PB are tangents to a circle with centre O such that $\angle P = 90^\circ$. If $AB = 3\sqrt{2}$ cm, then the diameter of the circle is
In the adjoining figure, TS is a tangent to a circle with centre O. The value of $2x^\circ$ is
Consider the following statements followed by two conclusions.
Statements: 1. Some men are great. 2. Some men are wise.
Conclusions: 1. Men are either great or wise. 2. Some men are neither great nor wise. Choose the correct option: