The work done in an isothermal reversible expansion of an ideal gas is given by:
\[
W = - nRT \ln \left( \frac{V_f}{V_i} \right)
\]
where:
- \( n = 1 \) mole (given),
- \( R = 0.0821 \) L atm K\(^{-1}\) mol\(^{-1}\),
- \( T = 61 \) K,
- \( V_i = 1.0 \) L, \( V_f = 10.0 \) L.
\[
W = - (1) (0.0821) (61) \ln \left( \frac{10.0}{1.0} \right)
\]
\[
W = - (5.0081) \ln (10)
\]
Since \( \ln (10) = 2.302 \),
\[
W = - (5.0081 \times 2.302)
\]
\[
W = -11.52 \text{ L atm}
\]
Thus, the correct answer is \(\boxed{-11.52 \text{ L atm}}\).