Step 1: Applying the General Gas Law
For an ideal gas:
\[
\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}
\]
where:
- \( P_1 = 203 \) kPa, \( V_1 = 0.5 \) m\(^3\), \( T_1 = 400 \) K
- \( P_2 = 304 \) kPa, \( V_2 = 0.2 \) m\(^3\), \( T_2 = ? \)
Step 2: Rearranging the Equation
\[
T_2 = \frac{P_2 V_2 T_1}{P_1 V_1}
\]
Step 3: Substituting Values
\[
T_2 = \frac{(304)(0.2)(400)}{(203)(0.5)}
\]
\[
T_2 = \frac{24320}{101.5} \approx 160 K
\]
Thus, the temperature change required is \( 160 \) K.
\bigskip