Step 1: Using the Gibbs Free Energy and Equilibrium Constant Relation
The standard Gibbs free energy change \( \Delta_r G^\circ \) is related to the equilibrium constant \( K \) by: \[ \Delta_r G^\circ = - RT \ln K \] where: - \( R = 8.314 \) J mol\(^{-1}\) K\(^{-1}\) = \( 8.314 \times 10^{-3} \) kJ mol\(^{-1}\) K\(^{-1}\),
- \( T = 300 \) K,
- \( \Delta_r G^\circ = -11.5 \) kJ mol\(^{-1}\).
Step 2: Rearranging for \( K \) \[ \ln K = \frac{-\Delta_r G^\circ}{RT} \] Substituting values: \[ \ln K = \frac{-(-11.5)}{(8.314 \times 10^{-3}) \times 300} \] \[ \ln K = \frac{11.5}{2.4942} \] \[ \ln K \approx 4.61 \] Step 3: Finding \( K \)
Taking the exponent: \[ K = e^{4.61} \] Approximating: \[ e^{4.61} \approx 100 \] Final Answer: The equilibrium constant is approximately \( 100 \), which matches Option (2).
Arrange the following in increasing order of their pK\(_b\) values.
What is Z in the following set of reactions?
Acetophenone can be prepared from which of the following reactants?
What are \(X\) and \(Y\) in the following reactions?
What are \(X\) and \(Y\) respectively in the following reaction?