Step 1: Using the Gibbs Free Energy and Equilibrium Constant Relation
The standard Gibbs free energy change \( \Delta_r G^\circ \) is related to the equilibrium constant \( K \) by: \[ \Delta_r G^\circ = - RT \ln K \] where: - \( R = 8.314 \) J mol\(^{-1}\) K\(^{-1}\) = \( 8.314 \times 10^{-3} \) kJ mol\(^{-1}\) K\(^{-1}\),
- \( T = 300 \) K,
- \( \Delta_r G^\circ = -11.5 \) kJ mol\(^{-1}\).
Step 2: Rearranging for \( K \) \[ \ln K = \frac{-\Delta_r G^\circ}{RT} \] Substituting values: \[ \ln K = \frac{-(-11.5)}{(8.314 \times 10^{-3}) \times 300} \] \[ \ln K = \frac{11.5}{2.4942} \] \[ \ln K \approx 4.61 \] Step 3: Finding \( K \)
Taking the exponent: \[ K = e^{4.61} \] Approximating: \[ e^{4.61} \approx 100 \] Final Answer: The equilibrium constant is approximately \( 100 \), which matches Option (2).
The percentage error in the measurement of mass and velocity are 3% and 4% respectively. The percentage error in the measurement of kinetic energy is: