Since, half life is independent of the initial concentration of \(AB_2\).
Hence, reaction is “First Order”.
\(k =\frac{ 2.303 log\;2}{t_{1/2}}\)
\(\frac{2.303 log\;2}{t_{1/2}} = \frac{2.303}{t} \log\frac{100}{(100−80)}\)
\(\frac{2.303 \times 0.3 }{200} = \frac{2.303 }{ t }\log5\)
\(t = 467 \;s\)
The half-life of a radioactive nucleus is 5 years. The fraction of the original sample that would decay in 15 years is:
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

The amount of time taken for half of a particular sample to react is known as Half-life.
We can describe exponential decay by any of the three formulas

