Since, half life is independent of the initial concentration of \(AB_2\).
Hence, reaction is “First Order”.
\(k =\frac{ 2.303 log\;2}{t_{1/2}}\)
\(\frac{2.303 log\;2}{t_{1/2}} = \frac{2.303}{t} \log\frac{100}{(100−80)}\)
\(\frac{2.303 \times 0.3 }{200} = \frac{2.303 }{ t }\log5\)
\(t = 467 \;s\)
The half-life of a radioactive nucleus is 5 years. The fraction of the original sample that would decay in 15 years is:
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
The amount of time taken for half of a particular sample to react is known as Half-life.
We can describe exponential decay by any of the three formulas

