At 298 K, the value of \( -\frac{d[Br^-]}{dt} \) for the reaction \[ 5Br^- (aq) + BrO_3^- (aq) + 6H^+ (aq) \rightarrow 3Br_2 (aq) + 3H_2O (l) \] is \( x \) mol \( L^{-1} \) min\(^{-1}\). What is the rate (in mol \( L^{-1} \) min\(^{-1}\)) of this reaction?
Step 1: Understanding the Rate of Reaction - The rate of reaction is defined using the rate of disappearance of reactants or the rate of formation of products. - The general expression for rate is: \[ {Rate} = -\frac{1}{\nu} \frac{d[C]}{dt} \] where \( \nu \) is the stoichiometric coefficient of species \( C \). 
Step 2: Applying the Rate Expression - Given: \[ -\frac{d[Br^-]}{dt} = x \] Since the balanced equation gives a stoichiometric coefficient of 5 for \( Br^- \): \[ {Rate} = \frac{1}{5} \times \left(-\frac{d[Br^-]}{dt} \right) \] \[ = \frac{x}{5} \] Final Answer: The correct rate of the reaction is \( \frac{x}{5} \).
Observe the following reactions: 
\( AB(g) + 25 H_2O(l) \rightarrow AB(H_2S{O_4}) \quad \Delta H = x \, {kJ/mol}^{-1} \) 
\( AB(g) + 50 H_2O(l) \rightarrow AB(H_2SO_4) \quad \Delta H = y \, {kJ/mol}^{-1} \) 
The enthalpy of dilution, \( \Delta H_{dil} \) in kJ/mol\(^{-1}\), is:
If the roots of $\sqrt{\frac{1 - y}{y}} + \sqrt{\frac{y}{1 - y}} = \frac{5}{2}$ are $\alpha$ and $\beta$ ($\beta > \alpha$) and the equation $(\alpha + \beta)x^4 - 25\alpha \beta x^2 + (\gamma + \beta - \alpha) = 0$ has real roots, then a possible value of $y$ is: