Step 1: Write the Ionization Equilibrium for Acetic Acid
Acetic acid (\(\text{CH}_3\text{COOH}\)) is a weak acid that ionizes partially in water.
\[
\text{CH}_3\text{COOH}(aq) \rightleftharpoons \text{CH}_3\text{COO}^-(aq) + \text{H}^+(aq)
\]
Step 2: Set Up an ICE Table (Initial, Change, Equilibrium)
Let the initial concentration of acetic acid be $C = 0.02 \text{ M}$. Let $\alpha$ be the degree of ionization.
Step 3: Write the Expression for the Acid Dissociation Constant (\( K_a \))
The acid dissociation constant ($K_a$) for acetic acid is given by:
\[
K_a = \frac{[\text{CH}_3\text{COO}^-][\text{H}^+]}{[\text{CH}_3\text{COOH}]}
\]
Substitute the equilibrium concentrations from the ICE table:
\[
K_a = \frac{(C\alpha)(C\alpha)}{C(1-\alpha)} = \frac{C^2\alpha^2}{C(1-\alpha)} = \frac{C\alpha^2}{1-\alpha}
\]
Step 4: Apply Approximation for Weak Acids
For weak acids, the degree of ionization ($\alpha$) is very small (typically much less than 1). Therefore, we can approximate $(1-\alpha) \approx 1$.
The $K_a$ expression simplifies to:
\[
K_a \approx C\alpha^2
\]
From this, we can solve for $\alpha$:
\[
\alpha^2 = \frac{K_a}{C}
\]
\[
\alpha = \sqrt{\frac{K_a}{C}}
\]
Step 5: Substitute Given Values and Calculate \( \alpha \)
Given:
\begin{itemize}
\item $K_a = 1.8 \times 10^{-5}$
\item $C = 0.02 \text{ M}$ (which is $2 \times 10^{-2} \text{ M}$)
\end{itemize}
\[
\alpha = \sqrt{\frac{1.8 \times 10^{-5}}{0.02}}
\]
\[
\alpha = \sqrt{\frac{18 \times 10^{-6}}{2 \times 10^{-2}}}
\]
\[
\alpha = \sqrt{9 \times 10^{-4}}
\]
\[
\alpha = 3 \times 10^{-2}
\]
\[
\alpha = 0.03
\]
Step 6: Calculate the Percentage of Ionization
Percentage of ionization = $\alpha \times 100%$
\[
\text{Percentage of ionization} = 0.03 \times 100% = 3%
\]
Step 7: Analyze Options
\begin{itemize}
\item Option (1): 3. Correct, as it matches our calculated percentage of ionization.
\item Option (2): 4.242. Incorrect.
\item Option (3): 5. Incorrect.
\item Option (4): 1.414. Incorrect.
\end{itemize}