The balloon is subject to a change in both temperature and pressure. To solve this, we use the combined gas law:
\[
\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}
\]
Where:
\( P_1 = 756 \) mm, \( V_1 = 450 \) ml, \( T_1 = 12^\circ C = 285 \, \text{K} \)
\( P_2 = 765 \) mm, \( T_2 = 5^\circ C = 278 \, \text{K} \)
Rearranging the equation to solve for \( V_2 \):
\[
V_2 = V_1 \times \frac{P_1}{P_2} \times \frac{T_2}{T_1}
\]
Substituting the values:
\[
V_2 = 450 \times \frac{756}{765} \times \frac{278}{285} = 450 \times 0.988 \times 0.976 = 450 \times 0.964 = 433.8 \, \text{ml}
\]
The change in volume is:
\[
\Delta V = V_2 - V_1 = 433.8 - 450 = -16.22 \, \text{ml}
\]
Thus, the volume decreases by 16.22 ml.