Step 1:Recall the Laplace transform definition for hyperbolic cosine.
The Laplace transform of \( \cosh(ax) \) is given by the standard formula:
\[
\mathcal{L}[\cosh(ax)] = \int_0^\infty e^{-sx} \cosh(ax) \, dx
\]
Step 2:Use the known Laplace transform identity:
\[
\mathcal{L}[\cosh(ax)] = \frac{s}{s^2 - a^2}, \quad \text{for } s > |a|
\]
Step 3:Match with given options.
Only option (C) matches the correct transform result.