Question:

Assuming \( s>|a| \); the Laplace transform of \( f(x) = \cosh(ax) \) is:

Show Hint

Always remember key Laplace transform pairs for hyperbolic functions:
- \( \mathcal{L}[\cosh(ax)] = \frac{s}{s^2 - a^2} \)
- \( \mathcal{L}[\sinh(ax)] = \frac{a}{s^2 - a^2} \)
Applicable when \( s>|a| \).
Updated On: Apr 19, 2025
  • \( \frac{s}{s^2 + a^2} \)
  • \( \frac{a}{s^2 + a^2} \)
  • \( \frac{s}{s^2 - a^2} \)
  • \( \frac{a}{s^2 - a^2} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Step 1: Recall the Laplace transform definition for hyperbolic cosine.
The Laplace transform of \( \cosh(ax) \) is given by the standard formula:
\[ \mathcal{L}[\cosh(ax)] = \int_0^\infty e^{-sx} \cosh(ax) \, dx \]
Step 2: Use the known Laplace transform identity:
\[ \mathcal{L}[\cosh(ax)] = \frac{s}{s^2 - a^2}, \quad \text{for } s > |a| \]
Step 3: Match with given options.
Only option (C) matches the correct transform result.
Was this answer helpful?
0
0

Questions Asked in GATE ES exam

View More Questions