Step 1: Understanding the Assertion (A):
We are given the polynomial \( p(x) = x^2 - 2x - 3 \). To find the zeroes of the polynomial, we solve the equation \( x^2 - 2x - 3 = 0 \) by factoring it.Step 2: Understanding the Reason (R):
The graph of a quadratic polynomial intersects the x-axis at the points where the value of the polynomial is zero. The x-intercepts of the graph correspond to the zeroes of the polynomial. Since we have already established that the zeroes of the polynomial \( p(x) = x^2 - 2x - 3 \) are \( x = -1 \) and \( x = 3 \), it follows that the graph of this polynomial intersects the x-axis at the points \( (-1, 0) \) and \( (3, 0) \). This confirms the reason that the graph of the polynomial intersects the x-axis at these points.Step 3: Conclusion:
Both the assertion and the reason are true:निम्नलिखित विषय पर संकेत बिंदुओं के आधार पर लगभग 120 शब्दों में एक अनुच्छेद लिखिए |
पर्यावरण की आत्मा : वृक्ष
संकेत बिंदु -
पर्यावरण क्या है
पर्यावरण में वृक्षों का महत्त्व
वृक्षारोपण अभियान