Assertion (A):
$$
\frac{d}{dx} \left( \frac{x^2 \sin x}{\log x} \right)
= \frac{x^2 \cos x \cdot \log x - x^2 \sin x \cdot \frac{1}{x}}{(\log x)^2}
+ \frac{2x \sin x}{\log x}
\Rightarrow \text{(matches the structure of product + quotient rule)}
$$
Reason (R):
$$
\frac{d}{dx} \left( \frac{uv}{w} \right)
= \frac{uv'}{w} + \frac{u'v}{w} - \frac{uvw'}{w^2}
\Rightarrow \text{(correct general derivative formula)}
$$
Show Hint
When differentiating a fraction of products, use the formula:
\[
\frac{d}{dx} \left( \frac{uv}{w} \right)
= \frac{uv'}{w} + \frac{u'v}{w} - \frac{uvw'}{w^2}
\]
A is true, R is true and R is correct explanation of A
A is true, R is true but not correct explanation
A is true, R is false
A is false, R is true
Hide Solution
Verified By Collegedunia
The Correct Option isA
Solution and Explanation
We are differentiating:
\[
f(x) = \frac{x^2 \sin x}{\log x}
\Rightarrow \text{This is } \frac{uv}{w},\ u = x^2,\ v = \sin x,\ w = \log x
\]
Apply the derivative rule as given in reason (R):
\[
\frac{d}{dx} \left( \frac{uv}{w} \right)
= \frac{uv'}{w} + \frac{u'v}{w} - \frac{uvw'}{w^2}
\Rightarrow \frac{x^2 \cos x + 2x \sin x}{\log x} - \frac{x^2 \sin x \cdot \frac{1}{x}}{(\log x)^2}
= \frac{x^2 \cos x + 2x \sin x}{\log x} - \frac{x \sin x}{(\log x)^2}
\]
Which simplifies and matches assertion.
Hence both A and R are true and R is the correct explanation of A.