
The relationship between apparent depth and real depth in a medium is given by:
\[ \text{Apparent depth} = \frac{\text{Real depth}}{\mu}, \]
where:
Substitute the values:
\[ \text{Apparent depth of } O = \frac{8}{\frac{4}{3}} = 6 \, \text{cm}. \]



Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.