The relationship between apparent depth and real depth in a medium is given by:
\[ \text{Apparent depth} = \frac{\text{Real depth}}{\mu}, \]
where:
Substitute the values:
\[ \text{Apparent depth of } O = \frac{8}{\frac{4}{3}} = 6 \, \text{cm}. \]
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: