\(Pt(s) ∣ H2(g)(1atm) ∣ H+(aq, [H+]=1)\, ∥\, Fe3+(aq), Fe2+(aq) ∣ Pt(s)\)
Given\( E^∘_{Fe^{3+}Fe^{2+}}\)\(=0.771V\) and \(E^∘_{H^{+1/2}H_2}=0\,V,T=298K\)
If the potential of the cell is 0.712V, the ratio of concentration of \(Fe2+\) to \(Fe3+\) is
Given below are two statements, one is labelled as Assertion A and the other is labelled as Reason R
Assertion (A) : 02 is liberated in the non-cyclic photophosphorylation.
Reason (R) : Liberation of oxygen is due to photolysis of water.
In the light of the above statements, choose the correct answer from the options given below
Given below are two statements, one is labelled as Assertion A and the other is labelled as Reason R
Assertion (A) : The Cro-Magnon man was the direct ancestor of the living modern man.
Reason (R) : Cro-Magnon man had slightly prognathous face.
In the light of the above statements, choose the correct answer from the options given below
Given below are two statements, one is labelled as Assertion A and the other is labelled as Reason R
Assertion (A) : In eukaryotes, transcription occurs in nucleus.
Reason (R) : In bacteria, transcription and translation occurs in cytoplasm.
In the light of the above statements, choose the correct answer from the options given below
Galvanic cells, also known as voltaic cells, are electrochemical cells in which spontaneous oxidation-reduction reactions produce electrical energy. It converts chemical energy to electrical energy.
It consists of two half cells and in each half cell, a suitable electrode is immersed. The two half cells are connected through a salt bridge. The need for the salt bridge is to keep the oxidation and reduction processes running simultaneously. Without it, the electrons liberated at the anode would get attracted to the cathode thereby stopping the reaction on the whole.