We are given the curves \(y^2 = 4(x+7)\) and \(y^2 = 5(2-x)\). To find the area enclosed between these curves, we first need to find the points of intersection. Equating the expressions for \(y^2\), we have
\[
4(x+7) = 5(2-x)
\]
\[
4x + 28 = 10 - 5x
\]
\[
9x = -18
\]
\[
x = -2
\]
Substituting \(x = -2\) into \(y^2 = 4(x+7)\), we get
\[
y^2 = 4(-2+7) = 4(5) = 20
\]
\[
y = \pm 2\sqrt{5}
\]
The points of intersection are \((-2, 2\sqrt{5})\) and \((-2, -2\sqrt{5})\).
The area enclosed between the curves is given by
\[
A = \int_{-2\sqrt{5}}^{2\sqrt{5}} (x_2 - x_1) \, dy
\]
where \(x_1\) and \(x_2\) are the x-coordinates of the curves expressed in terms of \(y\).
From \(y^2 = 4(x+7)\), we have \(x_1 = \frac{y^2}{4} - 7\).
From \(y^2 = 5(2-x)\), we have \(x_2 = 2 - \frac{y^2}{5}\).
Then
\[
A = \int_{-2\sqrt{5}}^{2\sqrt{5}} \left( 2 - \frac{y^2}{5} - \left( \frac{y^2}{4} - 7 \right) \right) \, dy
\]
\[
= \int_{-2\sqrt{5}}^{2\sqrt{5}} \left( 9 - \frac{y^2}{5} - \frac{y^2}{4} \right) \, dy
\]
\[
= \int_{-2\sqrt{5}}^{2\sqrt{5}} \left( 9 - \frac{9y^2}{20} \right) \, dy
\]
\[
= \left[ 9y - \frac{3y^3}{20} \right]_{-2\sqrt{5}}^{2\sqrt{5}}
\]
\[
= \left( 18\sqrt{5} - \frac{3(2\sqrt{5})^3}{20} \right) - \left( -18\sqrt{5} - \frac{3(-2\sqrt{5})^3}{20} \right)
\]
\[
= 36\sqrt{5} - \frac{6(2\sqrt{5})^3}{20}
\]
\[
= 36\sqrt{5} - \frac{6(40\sqrt{5})}{20}
\]
\[
= 36\sqrt{5} - 12\sqrt{5}
\]
\[
= 24\sqrt{5}
\]
Therefore, the area enclosed between the curves is \(24\sqrt{5}\).