Question:

Area lying in first quadrant and bounded by the circle \(x^2+ y^2 = 9\) and the lines x = 1 and x = 3 is:

Updated On: Apr 19, 2024
  • \(|\frac{9π}{2}-\sqrt 2-\frac{9}{4}sin^{-1}\frac{1}{3}|\) sq.units
  • \(|9π-\sqrt 2-\frac{9}{2}sin^{-1}\frac{1}{3}|\) sq.units
  • \(|\frac{9π}{4}+\sqrt 2-\frac{9}{2}sin^{-1}\frac{1}{3}|\) sq.units
  • \(|\frac{9π}{4}-\sqrt 2-\frac{9}{2}sin^{-1}\frac{1}{3}|\) sq.units
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

The correct option is(D):\(|\frac{9π}{4}-\sqrt 2-\frac{9}{2}sin^{-1}\frac{1}{3}|\) sq.units
Was this answer helpful?
0
0