Since angles are in AP:
\[
A = x - d,\quad B = x,\quad C = x + d \Rightarrow A + B + C = 180^\circ
\Rightarrow 3x = 180 \Rightarrow x = 60^\circ
\]
So:
\[
A = 45^\circ,\quad B = 60^\circ,\quad C = 75^\circ
\]
Use sine rule:
\[
\frac{b}{\sin B} = \frac{c}{\sin C}
\Rightarrow \frac{b}{\sin 60^\circ} = \frac{c}{\sin 75^\circ}
\Rightarrow \frac{\sqrt{3}}{\sqrt{3}/2} = \frac{\sqrt{2}}{\sin 75^\circ} \Rightarrow \text{Only possible when } A = 75^\circ
\]