Step 1: Formula for angle between two vectors.
The angle \( \theta \) between two vectors \( \vec{a} \) and \( \vec{b} \) is given by the formula:
\[
\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|}.
\]
where \( \vec{a} \cdot \vec{b} \) is the dot product of the vectors and \( |\vec{a}| \) and \( |\vec{b}| \) are the magnitudes of the vectors.
Step 2: Calculating the dot product.
The dot product \( \vec{a} \cdot \vec{b} \) is:
\[
\vec{a} \cdot \vec{b} = (1)(1) + (1)(-1) + (-1)(1) = 1 - 1 - 1 = -1.
\]
Step 3: Calculating the magnitudes.
The magnitudes of \( \vec{a} \) and \( \vec{b} \) are:
\[
|\vec{a}| = \sqrt{1^2 + 1^2 + (-1)^2} = \sqrt{3}, |\vec{b}| = \sqrt{1^2 + (-1)^2 + 1^2} = \sqrt{3}.
\]
Step 4: Finding the angle.
Now, using the formula for the angle:
\[
\cos \theta = \frac{-1}{\sqrt{3} \times \sqrt{3}} = \frac{-1}{3}, \theta = \cos^{-1}\left(\frac{-1}{3}\right) \approx 60^\circ.
\]
Step 5: Conclusion.
Thus, the angle between the vectors is 60°, which makes the statement true.
Let $\vec{a}$ and $\vec{c}$ be unit vectors such that the angle between them is $\cos^{-1} \left( \frac{1}{4} \right)$. If $\vec{b} = 2\vec{c} + \lambda \vec{a}$. Where $\lambda > 0$ and $|\vec{b}| = 4$, then $\lambda$ is equal to:
If \( \mathbf{a} = \hat{i} + \hat{j} + \hat{k}, \, \mathbf{b} = 2\hat{i} - \hat{j} + 3\hat{k}, \, \mathbf{c} = \hat{i} - 2\hat{j} + \hat{k} \), \(\text{ then a vector of magnitude }\) \( \sqrt{22} \) \(\text{ which is parallel to }\) \( 2\mathbf{a} - \mathbf{b} + \mathbf{c} \) is:
If $\vec{a}$ and $\vec{b}$ are two vectors such that $|\vec{a}| = 3$, $|\vec{b}| = 4$ and $|\vec{a} + \vec{b}| = 1$, then the value of $|\vec{a} \times \vec{b}|$ is:
If $\vec{a}$, $\vec{b}$ and $\vec{c}$ are three vectors such that $\vec{a} \times \vec{b} = \vec{c}$, $\vec{a} \cdot \vec{c} = 2$ and $\vec{b} \cdot \vec{c} = 1$. If $|\vec{b}| = 1$, then the value of $|\vec{a}|$ is:
निम्नलिखित में से किसी एक विषय पर निबंध लिखिए:
(i) पर्यावरण की सुरक्षा
(ii) दुखों की उपयोगिता
(iii) विद्यार्थी और अनुशासन
(iv) राष्ट्रीय एकता और अखंडता
(v) इंटरनेट का दैनिक जीवन में अनुपयोग
परीक्षा की तैयारी की जानकारी देते हुए पिता को पत्र लिखिए।
द्वनि विस्तारक यंत्रों पर प्रतिबंध लगाने हेतु जिला सचिव महोदय को प्रार्थना पत्र लिखिए।
निम्नलिखित गद्यांश की संदर्भ-प्रसंग सहित व्याख्या कीजिए: गद्यांश: पैसा पावर है। पर उसके स्वभाव में आस-पास सालों तक जमा न जमा हो तो क्या वह ताकत पावर है! पैसे को देखने के लिए बैंक-हिसाब सीट, पर माल-असबाब, मकान-कोठी तो अनदेखे भी दीखते हैं। पैसे के उस 'पेसींग पावर' के प्रयोग में ही पावर का खेल है।
निम्नलिखित गद्यांश की संदर्भ-प्रसंग सहित व्याख्या कीजिए: गद्यांश: एक बार वह 'डांग' देखने श्यामनगर शेला गया। पहलवानों की कुस्ती और डांव-पेच देखकर उससे नहीं रहा गया। जवानी की मस्ती और होल की ललकारती हुई आवाज़ ने उसकी नसों में बिजली उत्पन्न कर दी। उसने बिना कुछ सोचे-समझे दंगल में 'शेर के बच्चों' को चुनौति दे दी।