To solve this problem, we need to find the probability that the first draw gives all white balls, and the second draw gives all black balls. This requires understanding the concept of probability with respect to combinations.
The urn contains:
We are drawing 4 balls in two successive draws without replacement. Let's calculate the probability step by step:
The correct answer is therefore \(\frac{3}{715}\).
Probability of drawing 4 white balls in the first draw:
\(\frac{\binom{6}{4}}{\binom{15}{4}} = \frac{15}{1365}.\)
After removing 4 white balls, there are 9 black balls left. Probability of drawing 4 black balls in the second draw:
\(\frac{\binom{9}{4}}{\binom{11}{4}} = \frac{126}{330}.\)
The required probability is:
\(\frac{15}{1365} \times \frac{126}{330} = \frac{3}{715}.\)
The Correct answer is: \( \frac{3}{715} \)
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
In a Young's double slit experiment, three polarizers are kept as shown in the figure. The transmission axes of \( P_1 \) and \( P_2 \) are orthogonal to each other. The polarizer \( P_3 \) covers both the slits with its transmission axis at \( 45^\circ \) to those of \( P_1 \) and \( P_2 \). An unpolarized light of wavelength \( \lambda \) and intensity \( I_0 \) is incident on \( P_1 \) and \( P_2 \). The intensity at a point after \( P_3 \), where the path difference between the light waves from \( S_1 \) and \( S_2 \) is \( \frac{\lambda}{3} \), is:
