In an oscillating spring mass system, a spring is connected to a box filled with sand. As the box oscillates, sand leaks slowly out of the box vertically so that the average frequency ω(t) and average amplitude A(t) of the system change with time t. Which one of the following options schematically depicts these changes correctly? 
The center of a disk of radius $ r $ and mass $ m $ is attached to a spring of spring constant $ k $, inside a ring of radius $ R>r $ as shown in the figure. The other end of the spring is attached on the periphery of the ring. Both the ring and the disk are in the same vertical plane. The disk can only roll along the inside periphery of the ring, without slipping. The spring can only be stretched or compressed along the periphery of the ring, following Hooke’s law. In equilibrium, the disk is at the bottom of the ring. Assuming small displacement of the disc, the time period of oscillation of center of mass of the disk is written as $ T = \frac{2\pi}{\omega} $. The correct expression for $ \omega $ is ( $ g $ is the acceleration due to gravity): 
A point charge \( q \) is placed at a distance \( d \) above an infinite, grounded conducting plate placed on the \( xy \)-plane at \( z = 0 \).
The electrostatic potential in the \( z > 0 \) region is given by \( \phi = \phi_1 + \phi_2 \), where:
\( \phi_1 = \frac{1}{4 \pi \epsilon_0} \cdot \frac{q}{\sqrt{x^2 + y^2 + (z - d)^2}} \)
\( \phi_2 = - \frac{1}{4 \pi \epsilon_0} \cdot \frac{q}{\sqrt{x^2 + y^2 + (z + d)^2}} \)
Which of the following option(s) is/are correct?
Two projectile protons \( P_1 \) and \( P_2 \), both with spin up (along the \( +z \)-direction), are scattered from another fixed target proton \( T \) with spin up at rest in the \( xy \)-plane, as shown in the figure. They scatter one at a time. The nuclear interaction potential between both the projectiles and the target proton is \( \hat{\lambda} \vec{L} \cdot \vec{S} \), where \( \vec{L} \) is the orbital angular momentum of the system with respect to the target, \( \vec{S} \) is the spin angular momentum of the system, and \( \lambda \) is a negative constant in appropriate units. Which one of the following is correct?

The figure shows an opamp circuit with a 5.1 V Zener diode in the feedback loop. The opamp runs from \( \pm 15 \, {V} \) supplies. If a \( +1 \, {V} \) signal is applied at the input, the output voltage (rounded off to one decimal place) is:

A wheel of mass \( 4M \) and radius \( R \) is made of a thin uniform distribution of mass \( 3M \) at the rim and a point mass \( M \) at the center. The spokes of the wheel are massless. The center of mass of the wheel is connected to a horizontal massless rod of length \( 2R \), with one end fixed at \( O \), as shown in the figure. The wheel rolls without slipping on horizontal ground with angular speed \( \Omega \). If \( \vec{L} \) is the total angular momentum of the wheel about \( O \), then the magnitude \( \left| \frac{d\vec{L}}{dt} \right| = N(MR^2 \Omega^2) \). The value of \( N \) (in integer) is:
