An opaque cylinder (shown below) is suspended in the path of a parallel beam of light, such that its shadow is cast on a screen oriented perpendicular to the direction of the light beam. The cylinder can be reoriented in any direction within the light beam. Under these conditions, which one of the shadows P, Q, R, and S is NOT possible?

Step 1: Recall geometry of a cylinder.
A cylinder can cast different types of shadows depending on how it is oriented relative to the light beam:
- If light falls along the axis of the cylinder, the shadow is a circle (like option P).
- If light falls perpendicular to the axis, the shadow is a rectangle (like option R).
- If light falls at an angle, the shadow can be an ellipse (like option Q).
Step 2: Consider option S.
Option S shows a parallelogram-shaped shadow. For a cylinder, whose cross-sections are circles and projections are always circular or rectangular (or elliptical combinations), it is impossible to produce a parallelogram-shaped shadow.
Step 3: Eliminate possibilities.
- P (circle) → possible.
- Q (ellipse) → possible.
- R (rectangle) → possible.
- S (parallelogram) → not possible.
Final Answer: \[ \boxed{S} \]

In \(\triangle ABC\), \(DE \parallel BC\). If \(AE = (2x+1)\) cm, \(EC = 4\) cm, \(AD = (x+1)\) cm and \(DB = 3\) cm, then the value of \(x\) is

In the adjoining figure, PA and PB are tangents to a circle with centre O such that $\angle P = 90^\circ$. If $AB = 3\sqrt{2}$ cm, then the diameter of the circle is
In the adjoining figure, TS is a tangent to a circle with centre O. The value of $2x^\circ$ is
While doing Bayesian inference, consider estimating the posterior distribution of the model parameter (m), given data (d). Assume that Prior and Likelihood are proportional to Gaussian functions given by \[ {Prior} \propto \exp(-0.5(m - 1)^2) \] \[ {Likelihood} \propto \exp(-0.5(m - 3)^2) \] 
The mean of the posterior distribution is (Answer in integer)
Consider a medium of uniform resistivity with a pair of source and sink electrodes separated by a distance \( L \), as shown in the figure. The fraction of the input current \( (I) \) that flows horizontally \( (I_x) \) across the median plane between depths \( z_1 = \frac{L}{2} \) and \( z_2 = \frac{L\sqrt{3}}{2} \), is given by \( \frac{I_x}{I} = \frac{L}{\pi} \int_{z_1}^{z_2} \frac{dz}{(L^2/4 + z^2)} \). The value of \( \frac{I_x}{I} \) is equal to 
Suppose a mountain at location A is in isostatic equilibrium with a column at location B, which is at sea-level, as shown in the figure. The height of the mountain is 4 km and the thickness of the crust at B is 1 km. Given that the densities of crust and mantle are 2700 kg/m\(^3\) and 3300 kg/m\(^3\), respectively, the thickness of the mountain root (r1) is km. (Answer in integer)