To solve the problem, we need to determine the oxidation state of cobalt (Co) in the complex \(\text{CoCl}_3n\text{NH}_3\) and use the information provided to find the value of \(x + n\).
Hence, the value of "x + n" is 8, which is the correct answer.
The reaction of $[\text{Co}(\text{NH}_3)_5\text{Cl}]\text{Cl}_2$ with excess AgNO$_3$ is as follows:
\[[\text{Co}(\text{NH}_3)_5\text{Cl}]\text{Cl}_2 + \text{excess AgNO}_3 \rightarrow 2\text{AgCl (2 moles)}\]
In the complex $[\text{Co}(\text{NH}_3)_5\text{Cl}]\text{Cl}_2$:
The inner coordination sphere contains 1 Cl ligand.
The outer coordination sphere contains 2 Cl$^-$ ions, which react with AgNO$_3$ to give 2 moles of AgCl.
Let $x$ be the oxidation state of Co. The total charge on the complex is neutral. Therefore:
\[x + 0 \text{ (from 5 NH}_3\text{)} + (-1 \text{ from 1 Cl}) + (-2 \text{ from 2 Cl}^-) = 0\]
\[x - 1 - 2 = 0\]
\[x = +3\]
Here, $n = 5$ (the number of NH$_3$ ligands). Thus:
\[x + n = 3 + 5 = 8\]
Final Answer: $x + n = 8$
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to