The reaction of $[\text{Co}(\text{NH}_3)_5\text{Cl}]\text{Cl}_2$ with excess AgNO$_3$ is as follows:
\[[\text{Co}(\text{NH}_3)_5\text{Cl}]\text{Cl}_2 + \text{excess AgNO}_3 \rightarrow 2\text{AgCl (2 moles)}\]
In the complex $[\text{Co}(\text{NH}_3)_5\text{Cl}]\text{Cl}_2$:
The inner coordination sphere contains 1 Cl ligand.
The outer coordination sphere contains 2 Cl$^-$ ions, which react with AgNO$_3$ to give 2 moles of AgCl.
Let $x$ be the oxidation state of Co. The total charge on the complex is neutral. Therefore:
\[x + 0 \text{ (from 5 NH}_3\text{)} + (-1 \text{ from 1 Cl}) + (-2 \text{ from 2 Cl}^-) = 0\]
\[x - 1 - 2 = 0\]
\[x = +3\]
Here, $n = 5$ (the number of NH$_3$ ligands). Thus:
\[x + n = 3 + 5 = 8\]
Final Answer: $x + n = 8$
Given below are two statements:
Statement I: A homoleptic octahedral complex, formed using monodentate ligands, will not show stereoisomerism
Statement II: cis- and trans-platin are heteroleptic complexes of Pd.
In the light of the above statements, choose the correct answer from the options given below
Let \( S = \left\{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \right\} \), where
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]Then \( n(S) \) is equal to ______.
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: