The reaction of $[\text{Co}(\text{NH}_3)_5\text{Cl}]\text{Cl}_2$ with excess AgNO$_3$ is as follows:
\[[\text{Co}(\text{NH}_3)_5\text{Cl}]\text{Cl}_2 + \text{excess AgNO}_3 \rightarrow 2\text{AgCl (2 moles)}\]
In the complex $[\text{Co}(\text{NH}_3)_5\text{Cl}]\text{Cl}_2$:
The inner coordination sphere contains 1 Cl ligand.
The outer coordination sphere contains 2 Cl$^-$ ions, which react with AgNO$_3$ to give 2 moles of AgCl.
Let $x$ be the oxidation state of Co. The total charge on the complex is neutral. Therefore:
\[x + 0 \text{ (from 5 NH}_3\text{)} + (-1 \text{ from 1 Cl}) + (-2 \text{ from 2 Cl}^-) = 0\]
\[x - 1 - 2 = 0\]
\[x = +3\]
Here, $n = 5$ (the number of NH$_3$ ligands). Thus:
\[x + n = 3 + 5 = 8\]
Final Answer: $x + n = 8$
Low spin tetrahedral complexes are not known.
Why is a solution of \(\text{Ni(H}_2\text{O})_6^{2+}\) green while a solution of \(\text{Ni(CN)}_4^{2-}\) is colourless? (At. No. of Ni = 28)
If the system of equations \[ x + 2y - 3z = 2, \quad 2x + \lambda y + 5z = 5, \quad 14x + 3y + \mu z = 33 \] has infinitely many solutions, then \( \lambda + \mu \) is equal to:}
The equilibrium constant for decomposition of $ H_2O $ (g) $ H_2O(g) \rightleftharpoons H_2(g) + \frac{1}{2} O_2(g) \quad (\Delta G^\circ = 92.34 \, \text{kJ mol}^{-1}) $ is $ 8.0 \times 10^{-3} $ at 2300 K and total pressure at equilibrium is 1 bar. Under this condition, the degree of dissociation ($ \alpha $) of water is _____ $\times 10^{-2}$ (nearest integer value). [Assume $ \alpha $ is negligible with respect to 1]