
Acceleration due to gravity at depth d from surface of earth

Multiplying by mass 'm' on both sides,

Match the LIST-I with LIST-II
\[ \begin{array}{|l|l|} \hline \text{LIST-I} & \text{LIST-II} \\ \hline \text{A. Gravitational constant} & \text{I. } [LT^{-2}] \\ \hline \text{B. Gravitational potential energy} & \text{II. } [L^2T^{-2}] \\ \hline \text{C. Gravitational potential} & \text{III. } [ML^2T^{-2}] \\ \hline \text{D. Acceleration due to gravity} & \text{IV. } [M^{-1}L^3T^{-2}] \\ \hline \end{array} \]
Choose the correct answer from the options given below:
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____. 
Gravitational force is a central force that depends only on the position of the test mass from the source mass and always acts along the line joining the centers of the two masses.
According to Newton’s law of gravitation, “Every particle in the universe attracts every other particle with a force whose magnitude is,
By combining equations (1) and (2) we get,
F ∝ M1M2/r2
F = G × [M1M2]/r2 . . . . (7)
Or, f(r) = GM1M2/r2 [f(r)is a variable, Non-contact, and conservative force]