The weight of a body at a height \( h \) above the Earth's surface is given by:
\[
W_h = W \left( \frac{R}{R + h} \right)^2
\]
Given \( \frac{W_h}{W} = \frac{1}{16} \), so:
\[
\left( \frac{R}{R + h} \right)^2 = \frac{1}{16}
\Rightarrow \frac{R}{R + h} = \frac{1}{4}
\Rightarrow 4R = R + h
\Rightarrow h = 3R
\]
Hence, the height is \( 3R \) above the surface, making the total distance from the center of Earth:
\[
R + h = R + 3R = 4R
\]