Given:
- \( m = 10 \, \text{kg} \)
- \( s = 2 \, \text{m} \)
- \( t = 1 \, \text{s} \)
- \( g = 10 \, \text{m/s}^2 \)
Using the equation of motion:
\[
s = \frac{1}{2} a t^2 \Rightarrow 2 = \frac{1}{2} a (1)^2 \Rightarrow a = 4 \, \text{m/s}^2
\]
Let \( F_{\text{net}} = ma = 10 \times 4 = 40 \, \text{N} \)
The object experiences:
- Downward force (weight): \( W = mg = 10 \times 10 = 100 \, \text{N} \)
- Upward force (buoyancy): \( B \)
Using Newton’s second law:
\[
W - B = F_{\text{net}} \Rightarrow 100 - B = 40 \Rightarrow B = 60 \, \text{N}
\]
Buoyant force equals the weight of liquid displaced:
\[
B = m_{\text{liquid}} \cdot g \Rightarrow 60 = m_{\text{liquid}} \cdot 10 \Rightarrow m_{\text{liquid}} = 6 \, \text{kg}
\]