The magnetic field \(B\) around a straight current-carrying wire is given by Ampere’s law:
\[
B = \frac{\mu_0 I}{2 \pi r}
\]
where \(I = 10 \, \text{A}\), \(r = 2 \, \text{cm} = 0.02 \, \text{m}\), and \(\mu_0 = 4 \times 10^{-7} \, \text{T m/A}\).
Substituting the values:
\[
B = \frac{4 \times 10^{-7} \times 10}{2 \pi \times 0.02} = \frac{4 \times 10^{-6}}{0.1256} \approx 3.18 \times 10^{-5} \, \text{T}
\]
Final answer
Answer: \(\boxed{10^{-5} \, \text{T}}\)