Step 1: Drain current equation in the linear region.
For an NMOS transistor operating in the linear region, the drain current is expressed as:
\[
I_{DS} = \mu_n C_{ox} \frac{W}{L} \left[ (V_{GS} - V_{th}) V_{DS} - \frac{1}{2} V_{DS}^2 \right].
\]
The given values are:
\[
I_{DS} = 5 \, \mu {A}, \quad V_{DS} = 0.1 \, {V},
\]
\[
\mu_n C_{ox} \frac{W}{L} = 50 \, \mu {A}/{V}^2.
\]
\medskip
Step 2: Solve for \(V_{GS} - V_{th}\).
Substituting the known values into the equation for \(I_{DS}\):
\[
5 = 50 \left[ (V_{GS} - V_{th})(0.1) - \frac{1}{2}(0.1)^2 \right].
\]
Simplify:
\[
5 = 50 \left[ 0.1(V_{GS} - V_{th}) - 0.005 \right].
\]
\[
5 = 5(V_{GS} - V_{th}) - 0.25.
\]
\[
5.25 = 5(V_{GS} - V_{th}).
\]
\[
V_{GS} - V_{th} = 1.05 \, {V}.
\]
\medskip
Step 3: Calculate the transconductance.
The transconductance \(g_m\) in the linear region is:
\[
g_m = \mu_n C_{ox} \frac{W}{L} V_{DS}.
\]
For the new value of \(V_{DS} = 1.5 \, {V}\):
\[
g_m = 50 \times 1.5 = 75 \, \mu {A}/{V}.
\]
\medskip
Step 4: Corrected transconductance considering \(V_{DS}^2\).
Taking into account the correction term from the \(V_{DS}^2\) contribution, the transconductance becomes:
\[
g_m = \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{th} - V_{DS}).
\]
Substituting:
\[
g_m = 50 \times (1.05 - 1.5) = 52.50 \, \mu {A}/{V}.
\]
\medskip
Final Answer:
\[
\boxed{52.50 \, \mu {A}/{V}}
\]