Given:
Inverse demand: \( P = 1 - Q \), where \( Q = q_1 + q_2 + q_3 \).
Marginal costs: \[ c_1=\frac{9}{30},\quad c_2=\frac{10}{30},\quad c_3=\frac{11}{30}. \]
Step 1 β Cournot best-response functions
Firm \(i\)'s profit: \[ \pi_i = q_i(1 - q_1 - q_2 - q_3 - c_i). \] FOC: \[ 1 - q_i - Q_{-i} - c_i - q_i = 0 \] \[ \Rightarrow q_i = \frac{1 - c_i - Q_{-i}}{2}. \]
Step 2 β Substitute the marginal costs
Compute \(1 - c_i\): \[ 1 - c_1 = 1 - \frac{9}{30} = \frac{21}{30} = 0.7, \] \[ 1 - c_2 = 1 - \frac{10}{30} = \frac{20}{30} = 0.666\dots, \] \[ 1 - c_3 = 1 - \frac{11}{30} = \frac{19}{30} = 0.6333\dots. \] Thus: \[ q_1 = \frac{0.7 - (q_2 + q_3)}{2}, \] \[ q_2 = \frac{0.6667 - (q_1 + q_3)}{2}, \] \[ q_3 = \frac{0.6333 - (q_1 + q_2)}{2}. \]
Step 3 β Solve the system
Add the three best responses: \[ q_1 + q_2 + q_3 = \frac{0.7 + 0.6667 + 0.6333 - (q_1+q_2+q_3)\cdot 2}{2}. \] Let \(Q_c = q_1 + q_2 + q_3\). Then: \[ Q_c = \frac{2 - 2Q_c}{2} \] \[ Q_c = 1 - Q_c \] \[ \Rightarrow 2Q_c = 1 \] \[ \Rightarrow Q_c = 0.5. \]
Step 4 β Compute \((Q_c)^{-1}\)
\[ (Q_c)^{-1} = \frac{1}{0.5} = 2. \]
Final Answer: 2
| Firm 2 | Cooperate | Compete |
| Firm 1 | 5, 5 | 0, 10 |
| Compete | 10,0 | 2, 2 |

The sum of the payoffs to the players in the Nash equilibrium of the following simultaneous game is ............
| Player Y | ||
|---|---|---|
| C | NC | |
| Player X | X: 50, Y: 50 | X: 40, Y: 30 |
| X: 30, Y: 40 | X: 20, Y: 20 | |